GEOG 2215 – INTRODUCTION TO EARTH OBSERVATION AND ANALYSIS (W21)

Instructor: Dr. Muditha Heenkenda Lab Instructor: Jason Freeburn Office location: RC 2006E (online) Office location: RC 2004 (online)

Course Description:

Introduction to Earth Observation and Analysis course will introduce fundamentals of aerial photogrammetry including vertical and oblique photography, photo scale, mission planning, photo interpretation and stereo vision. Students become familiar with the basic image interpretation principles and aerial photography applications. The state-of-the-art remote sensing techniques such as stereo image acquisition, Remotely Piloted Aircraft Systems (RPAS) and LiDAR remote sensing will also be explored within this course.

Learning Outcomes:

Upon successful completion of this course, students will be able to:

- understand the basic principles of photogrammetry/remote sensing;
- describe the general procedure of aerial photography/RPAS mission planning;
- identify photo interpretation techniques including stereo viewing and their applications;
- understand the basic principles of LiDAR; and
- successfully apply different image processing techniques for data extraction using aerial images and LiDAR point clouds.

Learning Resources:

• **Recommended** (Chapter 2 and 3): Lillesand, T.M., Kiefer, R.W., and Chipman, J.W., 2015. *Remote Sensing and Image Interpretation*, 6th Edition (New Jersey: Wiley), ISBN 978-1-118-34328-9

ebook for renting: https://www.wiley.com/en-ca/Remote+Sensing+and+Image+Interpretation%2C+7th+Edition-p-9781118919477

Reading materials from the course website

Grading:

Lab exercises 45%

Quizzes 5%

Midterm exam 25% (Feb 24th, 2021)

Final exam 25% (TBA)

Course Expectations/Student Responsibilities:

1. **Attendance** is expected for each lecture and lab unless communicated with the instructor ahead of time.

- 2. Late Assignments receive a deduction of 10% per day unless an extension is agreed to with the instructor prior to the due date. After class assignments are graded and returned, late assignments receive a zero grade but must be satisfactorily completed to receive credit in the course.
- 3. **Participation** is expected in all class discussions, group work and collaborative efforts.
- 4. **Exams** (a) absences from illness, compassionate reasons or representing the university off-campus, supported by written documentation will be accepted as sufficient evidence to allow a rewrite of a missed test.
 - (b) If you miss an exam for any reason other than those deemed acceptable in Lakehead University calendar, then you will be given the opportunity of an essay-based makeup exam that is significantly longer and more difficult.

Course Schedule:

Week starting	Monday (lecture) (10.30 to 11.30)	Lab exercise (Monday 12.30 to 2.30)	Wednesday (lecture) (10.30 to 11.30)
from		-	
11	Introduction to the course;	Review – Introduction to GIS	
	Introduction to GIS		
18	Introduction to ArcGIS Pro	Lab 1: Introduction to ArcGIS Pro	Introduction to
			Photogrammetry (history)
25	Four types of aerial photos	Lab 2: Explore air photo archives,	Transition from analogue to
	(Panchromatic, B&W IR,	identify different features and change	digital photography
	Color IR, True color)	over time	(photographic films,
			multispectral images)
Feb 1	Digital photography (scale	Lab 3: Compare different types of	Geometry of aerial
	and GSD), different types of	photographs and digital cameras	photography (vertical/oblique,
	cameras (pixel size, CCD,		photo scale, relief
0	flying height and DSD)	T I A Di . 1	displacement)
8	Geometry of aerial	Lab 4: Photo characteristics,	Visual image interpretation
	photography (photo block,	calculate scale and relief	and map making
	forward overlap, sidelap)	displacement, and display	
15	multispectral images on screen Study Break		
22	Midterm test review	Lab 5: Image interpretation (create a	Midterm test
22	Wildleim test review	map)	Withterm test
Mar. 1	Image orientation (block	Lab 6: Create ortho mapping	Image orientation – improve
	adjustment)	workspace; interior orientation and	accuracy using Ground
	, ,	block adjustment in ArcGIS Pro	Control Points
8	Stereo vision and stereo	Lab 6 cont.: Add GCP and improve	Surface modelling using
	photo measurements (photo	the accuracy, create a stereo pair	overlap photos – DEM, DSM
	base, parallax, height)	Demonstrate stereo vision and 3D	
		digitizing	
15	Ortho photos, characteristics	Lab 6 cont.: Create ortho mosaic,	Review photogrammetric
	and applications	DEM and DSM, terrain display	workflow and reflect on lab 6
22	Introduction to RPAS and	Lab 7: Developing a flight plan	3D products and 3D
	mission planning (no flight	(ground coverage, no. flight lines,	visualization from RPAS
	lines, photos, overlaps)	photos, overlap) using	imagery
		MissionPlanner	
29	Introduction to RPAS	Lab 8: Follow ArcGIS Pro Ortho	Introduction to LiDAR
	(Regulations)	mapping workflow and create 3D	Remote Sensing
		products (repeat the same workflow	
		as Lab 6 with new dataset- student	
		project)	
April 5	Easter Monday (no classes)		LiDAR applications and
		T	software packages
12	Final exam review	Lab 9: Visualize LiDAR point	
		clouds	

Note that this document is subjected to change pending unforeseen circumstances.